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Circular membrane 
 
When we studied the one-dimensional wave equation we found that the method of 
separation of variables resulted in two simple harmonic oscillator (ordinary) 
differential equations.  The solutions of these were relatively straightforward.  Here 
we are interested in the next level of complexity – when the ODEs which arise upon 
separation may be different from the familiar SHO equation. This complexity arises 
when non-cartesian coordinate systems are used.   
 
Symmetry and coordinate systems 
The appropriate coordinate system is chosen so as to reflect the symmetry of the 
system.  Using the appropriate coordinate system often results in a simplification of 
the equations to be solved. And a further benefit appears at the stage where the 
boundary conditions are invoked. Thus, for example, the flow of heat in a cylindrical 
pipe is best treated by expressing the diffusion equation in cylindrical polar 
coordinates; the vibrations of a sphere are best treated by writing the wave equation in 
spherical polar coordinates; the vibration of a circular drum head is best treated in 
terms of the wave equation written in plane polar coordinates. 
 
Note that in all these cases it is the Laplacian operator 2∇  which must be expressed in 
the chosen coordinate system; you would look this up in a good reference book.   
 
Boundary and initial conditions 
Use plane polar coordinates – coordinate system determined by the boundary 
conditions. 
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plane polar coordinates 

 
The motion of the membrane is described by the wave equation (in two spatial 
dimensions): 
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We know the form of 2∇  in rectangular cartesian coordinates; here we need to 
transform it to polar coordinates.  This gives 
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which may be obtained by application of the chain rule for differentiation.  The 
second and third lines are equivalent; you should use whichever is more convenient. 
 
(You should be assured that a professional physicist would not consider deriving the 
expression for 2∇ in different coordinate systems; he/she would look this sort of thing 
up in a good reference book.) 
 
In plane polar coordinates the wave equation becomes  
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The field variable Ψ is a function of the two spatial variables, here r and θ, together 
with the time variable t.  That is,  
 ( ), ,r tθΨ = Ψ . 
But for the purposes of this exercise we shall be concerned with the solutions which 
exhibit circular symmetry.  That is, we are considering solutions that have the 
symmetry of the boundary conditions. 
 
(We note that in general the solutions of a PDE have symmetry lower than or equal to 
that of the boundary conditions.) 
 
The circularly symmetric solutions to the wave equation do not depend on θ ;  they 
depend only on r and t.  In other words a symmetry (in the solution) is indicated by 
the vanishing of a coodinate from the field variable. So here we are concerned with 
the field variable ( ),r tΨ . And since this Ψ does not depend on θ  the wave equation 
reduces to  
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This is a partial differential equation in two independent variables.  Thus we expect to 
be able to separate this into two ordinary differential equations. 
 
Separation of variables 
The procedure for separation of variables uses the substitution 
 ( ) ( ) ( ),r t R r T tΨ = . 
When this is inserted into the wave equation we obtain 
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and we see that the differentials are now total differentials.  The next step is to divide 
through by ( ) ( ) ( ),r t R r T tΨ = .  This gives: 
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Here the left and right hand sides are independent and this can only be so if they are 
equal to a constant.  For convenience we will write this constant as 2k− ; we shall see 
that this will help in satisfying the boundary conditions (recall the choice and 
justification of a similar separation constant for the vibrating string).  Using this 
separation constant gives us two ordinary differential equations 
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The first equation, for the time function, is nothing new; it is the simple harmonic 
oscillator equation.  This has solutions 
 ( ) ( ) ( )cos sinkT t A kvt B kvt= + , 
although at this stage we know nothing about the allowed values of the separation 
constants k.  We shall see how the allowed k values follow from the boundary 
conditions. 
 
The second equation, for the radial function, is new.  It is a linear ordinary differential 
equation but it does not have constant coefficients.  This makes the solutions a little 
more complicated. We can make a simplification through the substitution s kr= .  
This will remove the variable k from the equation.  The substitution gives us an 
equation for R as a function of s: 
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This is a special case of Bessel’s equation;  we shall investigate how to solve this 
equation later in the course.  For the present we note that Mathematica is able to solve 
the equation and it gives the solution as 
                                  R  =  A BesselJ[0, s]  +  B BesselY[0, s]. 
 
Here A and B are constants and they multiply Bessel functions, which Mathematica 
represents by BesselJ[0, s] and BesselY[0, s].  The conventional notation for these 
Bessel functions is 
 ( ) ( )0 0J   and  Ys s . 
These functions are plotted below. 
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Bessel functions ( ) ( )0 0J  and Ys s  
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You should note that the value of k determines the horizontal scaling of the functions. 
 
There have to be two independent solutions to the Bessel equation since it is of 
second order.  However we see that in this problem – the circular drum head – the Y0 
functions are not allowed as they go to minus infinity as 0r → which is unphysical; 
only the J0 functions are permitted as they are finite at 0r = .  The profile of the 
disturbance across the drumhead will then be described by functions of the form 
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profile of disturbance across a drum head  
 
Boundary conditions 
The boundary condition is that the edge of the drum head is fixed so that it cannot be 
displaced.  This means that  

( )0J 0kR =  

where R is the radius of the drum (not the ( )R r function here). 
 
This determines the allowed values of k since kR must correspond to a zero of the 
Bessel function.  In other words, if mα are the values of s for which ( )0J s is zero, then 
it follows that the allowed values of k are 
 m mk Rα= . 
 
(Note how the boundary conditions lead to quantisation.) 
 
Complete solution 
We have now found that there is a whole set of radial functions ( )R r that are possible 
solutions of our problem: 

 ( ) 0J m
mR r r

R
α =  
 

. 

Then combining this with the solution to the time equation, we have the mth solution 
as 

 ( ) ( ) ( ){ } 0, cos sin J m
m m m m mr t a k vt b k vt r

R
α Ψ = +  
 

 

and the general solution is a linear combination of all these 
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Initial conditions 
The coefficients am and bm are determined form the initial conditions.  The initial 
conditions are specified as 
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We substitute the general solution above into these expressions to give  
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These expressions give the initial functions ( )f r  and ( )g r  in terms of the 
coefficients am and bm.  What we want to do is to invert this result to give the 
coefficients am and bm in terms of the initial functions ( )f r  and ( )g r .  The key to 
doing this is orthogonality. – as we shall see in future lectures.  And when these 
coefficients are found in this way then the complete solution for the (circularly 
symmetric) behaviour of the drum head is given by 

 ( ) ( ) ( ){ } 0
1

, cos sin J m
m m m m

m
r t a k vt b k vt r

R
α∞

=

 Ψ = +  
 

∑ . 


